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Abstract 

Background:  Targeted therapies for Primary liver cancer (HCC) is limited to the multi-kinase inhibitors, and not fully 
effective due to the resistance to these agents because of the heterogeneous molecular nature of HCC developed 
during chronic liver disease stages and cirrhosis. Although combinatorial therapy can increase the efficiency of tar-
geted therapies through synergistic activities, isoform specific effects of the inhibitors are usually ignored. This study 
concentrated on PI3K/Akt/mTOR pathway and the differential combinatory bioactivities of isoform specific PI3K-α 
inhibitor (PIK-75) or PI3K-β inhibitor (TGX-221) with Sorafenib dependent on PTEN context.

Methods:  The bioactivities of inhibitors on PTEN adequate Huh7 and deficient Mahlavu cells were investigated with 
real time cell growth, cell cycle and cell migration assays. Differentially expressed genes from RNA-Seq were identified 
by edgeR tool. Systems level network analysis of treatment specific pathways were performed with Prize Collecting 
Steiner Tree (PCST) on human interactome and enriched networks were visualized with Cytoscape platform.

Results:  Our data from combinatory treatment of Sorafenib and PIK-75 and TGX-221 showed opposite effects; while 
PIK-75 displays synergistic effects on Huh7 cells leading to apoptotic cell death, Sorafenib with TGX-221 display 
antagonistic effects and significantly promotes cell growth in PTEN deficient Mahlavu cells. Signaling pathways were 
reconstructed and analyzed in-depth from RNA-Seq data to understand mechanism of differential synergistic or 
antagonistic effects of PI3K-α (PIK-75) and PI3K-β (TGX-221) inhibitors with Sorafenib. PCST allowed as to identify AOX1 
and AGER as targets in PI3K/Akt/mTOR pathway for this combinatory effect. The siRNA knockdown of AOX1 and AGER 
significantly reduced cell proliferation in HCC cells.

Conclusions:  Simultaneously constructed and analyzed differentially expressed cellular networks presented in this 
study, revealed distinct consequences of isoform specific PI3K inhibition in PTEN adequate and deficient liver cancer 
cells. We demonstrated the importance of context dependent and isoform specific PI3K/Akt/mTOR signaling inhibi-
tion in drug resistance during combination therapies. (https://​github.​com/​cansyl/​Isofo​rm-​spesi​fic-​PI3K-​inhib​itor-​analy​
sis).
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Background
According to WHO-Global cancer observatory (GCO) 
that one-fifth of men and one-sixth of women will be 
diagnosed with cancer throughout their lives and one-
eighth of men and one-eleventh of women will die of 
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it worldwide before the age of 75 years. Hepatocellular 
cancer (HCC) which constitutes the 75% of Primary 
liver cancers is the 5th most common and the 3rd most 
lethal cancer in the world [1, 2]. While the death rates 
from other cancers are decreasing due to advances in 
diagnosis and therapeutics, the incidence and the mor-
tality of HCC follow an increasing trend due to high 
rate of obesity associated liver diseases [3, 4].

Development of HCC is multi-factorial and complex 
biological process, where the chronic liver disease is 
initiated due to hepatic injury, followed by continu-
ous inflammation and cell death, which in turn leads 
to the regeneration of hepatocytes and the increased 
rate of mutations along with genomic instability [5]. 
The increased number of proliferating cells evokes the 
activation of several cell signaling pathways involved in 
liver regeneration, such as growth factor signaling, cell 
differentiation, angiogenesis and cell survival. Stimula-
tion of these pathways is mostly associated with tyros-
ine kinases which are usually the members of PI3K/
Akt/mTOR cell signaling [6]. Studies show that the het-
erogeneous nature of HCC is mainly caused by the vari-
ations of mutations and alterations in expression levels 
of these key proteins [7].

Currently there is no effective therapy for patients 
suffering from HCC, the survival rates is only 7% for 5 
years [1]. There are two FDA approved small molecule 
drug treatments for HCC; Sorafenib (Nexavar, BAY43–
9006) and Regorafenib (Bayer, BAY73–4506), are recep-
tor tyrosine kinase inhibitors targeting Raf, VEGFR and 
PDGFR kinases. They inhibit tumor cell proliferation 
and angiogenesis while promoting apoptosis. However, 
in most of the cases they are not capable of eliminating 
the cancer cells primarily because of the heterogene-
ous nature of HCC [8, 9]. Moreover, the signaling path-
ways involved in proliferation, growth, angiogenesis 
and metastasis are redundant, compensating each other 
through some key molecular regulations. Which makes 
them with superfluous functions due to the potential 
cross-talks between them, which could be another rea-
son for the ineffectiveness of these two multi-kinase 
inhibitors [6].

The constitutive activation of PI3K/Akt/mTOR sign-
aling pathway is frequently observed in liver cancer 
due to inactivating mutations or loss of heterozygosity 
in a tumor suppressor protein Phosphatase and tensin 
homolog (PTEN). PTEN dysfunction is observed in 
nearly 50% of the HCC cases and correlated with poor 
prognosis, drug resistance and low patient survival 
[10–12]. PTEN prevents the Akt activation by dephos-
phorylating PIP3, or mutations activating PIK3CA 
gene, or damage in the negative-feedback loop from 

mTOR signaling pathway in various epithelial cancers 
including HCC [13–16].

The influence of isoform diversity on responses to 
drugs with respect to large number of GPCR receptors 
has been demonstrated at systems level recently [17]. 
Furthermore, there are resent studies on the association 
of isoform specific differential involvement of AKT in 
the pathophysiology and therapeutic responses of can-
cer cells [18–20]. Here in this study, we focused on the 
response of HCC cells to isoform specific PI3K inhibi-
tors. PI3Ks are grouped into three classes based on their 
structures [21, 22] but two of Class I members of PI3Ks 
have heterodimeric class IA p110-α (p110) and class 
IB p110-β (p85) regulatory subunits are well studied 
enzymes in cancer. PIK3CA gene encoded PI3K isoform 
p110-α, is activated through receptor tyrosine kinases 
(RTKs) and Ras oncogene. In cancer, signaling though 
PI3K predominantly depends on alpha isoform regulat-
ing cellular growth, metabolism and angiogenesis. The 
other PI3K isoform encoded by PIK3CB, p110-β is regu-
lated mostly by G protein-coupled receptors (GPCRs) 
and has critical functions in inflammatory cells [23, 24].

In this study, we demonstrated that context (PTEN 
function) dependent isoform specific PI3K inhibition 
confers drug resistance by their antagonistic and syn-
ergistic effects with Sorafenib on HCC cells at network 
level in and studies focusing on the discovery of agents 
against HCC aim to identify target proteins that escape 
from regulatory signaling mechanisms of the cell.

Results
Molecular and cellular characterization Huh7 and Mahlavu 
cells in the presence of small molecule isoform specific 
PI3K inhibitors
Well-differentiated Huh7 cell line with adequate PTEN 
and poorly-differentiated PTEN deficient Mahlavu 
cells were selected to exploit throughout this study. 
The expression levels and the phosphorylation status of 
key proteins in PI3K/Akt/mTOR and RAF/MEK/ERK 
signaling pathways were reported by our group, and 
in correlation with their PTEN status, Mahlavu cells 
display hyper-activated cell survival proteins [25]. Ini-
tially Sorafenib, LY294002, PI3K inhibitor p110α subu-
nit specific (PIK-75) and PI3K inhibitor p110β subunit 
specific (TGX-221) were analyzed for their cytotoxic 
bioactivity and their effect on cell cycle progression 
on Huh7 and Mahlavu cells (Fig.  1A). G1, S and G2/M 
cell cycle phases were analyzed separately to calculate 
viable cell distributions among them (Fig.  1B). Sub-G1 
percentage demonstrating apoptotic cells were also cal-
culated. Cell cycle distribution remained stable for both 
cell lines and all inhibitor treatments. In both cell lines, 
Sorafenib and PIK-75 treatments showed stimulation 
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of apoptosis through increase in sub-G1 population. 
In Huh7, Sorafenib seems to be more active while PIK-
75 functioned more in Mahlavu cells which was more 
aggressive than Huh7 cell line by PTEN-loss based hyper-
active Akt stimulation.

Migration analysis of the inhibitors
In order to analyze the effects of selected inhibitors on 
cell migration, wound-healing assay was performed. The 
percentages of wound closures after 48 h of initial scratch 
were calculated for Huh7 and Mahlavu. We observed that 
Sorafenib and PIK-75 reduced migration significantly 
(p < 0.001) in both Huh7 and Mahlavu (Fig. 1C).

Synergistic cytotoxicity analysis
Since none of the treatments alone was fully effective in 
inhibiting growth and stimulate apoptosis, we addressed 
the value of co-treatments of Sorafenib with PIK-75 and 
TGX-221 through real-time cell growth analysis (Fig. 1C). 
A synergistic effect of Sorafenib and PIK-75 treatments 
was observed on growth of both cell lines. TGX-221 
combinatory treatment with Sorafenib also resulted in 
synergistic growth inhibition on Huh7 cell line. On the 
other hand, TGX-221 displayed a growth inhibition of 
Mahlavu, TGX-221 co-treatment with Sorafenib resulted 
in an antagonistic effect and stimulated cellular growth. 
Furthermore, Sorafenib and PIK-75 treatment had more 

Fig. 1  Characterization of HCC cells in the presence of small molecules inhibitors. Real time cell growth analysis of Huh7 and Mahlavu cells with 
increasing concentrations (40 μM, 20 μM, 10 μM, 5 μM, 2.5 μM) of Sorafenib, PI3K inhibitor LY294002, PI3Ki-β inhibitor (TGX-22) and PI3Ki-α (1 μM, 
0.5 μM, 0.25 μM, 0.125 μM, 0.0625 μM) PI3Ki-α (PIK-75) along with DMSO vehicle control (Control is black and increasing drug concentrations is given 
in grey level, highest concentration is being the darkest) (A). Cell cycle analysis with flow cytometry. Sub-G1 population represents apoptotic cells 
(B). Wound healing assay for 24 and 48 h for cell migration. (C). 10 μM of Sorafenib, LY294002 and PI3Ki-β (TGX-221) and 0.1 μM of PI3Ki-α (PIK-75) 
were used for cell cycle and migration assays
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drastic effect on Mahlavu compared to Huh7. Therefore, 
these findings indicated that in PTEN deficient Mahlavu 
cells, constitutive activation of PI3K/Akt signaling mainly 
depends on p110-α (Fig. 2).

Network level analysis of isoform specific combinatory 
effects of PI3Ks
In order to describe the molecular events in the differ-
ential response of PTEN adequate (Huh7) and deficient 
(Mahlavu) cells displaying differential PI3K/Akt/mTOR 
pathway activities toward PI3K-α inhibitor (PIK-75) and 
PI3K-β inhibitor (TGX-221) alone or in combination with 
Sorafenib, we performed RNA sequencing experiments. 
Further, network-based data analysis using systems biol-
ogy approaches which is represented in Fig. 3A is applied.

Initially, we identified differentially expressed genes 
(DEGs) by using empirical analysis of digital gene expres-
sion data in R (edgeR tool) [26]. While PIK-75 (ALPHA) 
treated Huh7 cells had more upregulated genes, combi-
nation with Sorafenib reversed the number of genes in 
favor of gene downregulation. The response of Mahlavu 
to the same combination treatment (SALPHA) is sig-
nificantly different with highly increased number of up 
and downregulated genes when compared to Sorafenib 
or PIK-75 alone. In both cell lines, TGX-221 treatment 
had minor action yet in PTEN deficient Mahlavu, single 
treatment of Sorafenib had a neutral effect. Interestingly, 
TGX-221 and Sorafenib combination resulted in higher 
number of downregulated genes in Mahlavu compared to 
the number of upregulated genes in Huh7 (Fig. 3B).

Using Pearson correlation analysis, we demonstrated 
the similarities in the overall gene expressions using the 
corresponding logFC values. A significant correlation 
was observed between Sorafenib alone treatment and 
its combinatory treatment with TGX-221 (0.92) in Huh7 
and (0.63) in Mahlavu indicating ineffectiveness of single 
TGX-221 treatments in both cells. The similarity between 
PIK-75 and its combinatory treatment with Sorafenib in 
Mahlavu (0.74) is also high (Fig.  3C), which may be an 
evidence of the underfilling action of Sorafenib alone 
treatment in PTEN deficient cells.

50 most commonly differentially regulated genes 
ranked by the sum of absolute logFC values were repre-
sented through a dendrogram in Fig.  3D. In Huh7, up- 
and down-regulated genes were well clustered. DUSP5, 
PCNA, VCAN, GADD45B and DUSP8 genes in Huh7 

were the shared mostly. In Mahlavu, DEGs were not 
well separated like Huh7, some of the genes like EGR1, 
LINC00641, MIR6723, FOSB and ACTA2 were found to 
vary in different treatments. ESRG, CYP1B1-AS1, LDLR 
and TPTEP1 genes were the most common DEGs in 
Mahlavu.

Gene enrichment analysis of differential expression 
patterns in HCC cells
Considering the high correlation between specific treat-
ments, in order to investigate the expression patterns 
between different inhibitory treatments in HCC cell 
lines, Huh7 and Mahlavu genes were clustered separately 
using their corresponding logFC values.

Heatmap analysis of DEGs revealed expression pat-
tern of HCC cells and the gene enrichment analysis 
to these patterns (gene clusters) exploit the functional 
consequences (Fig.  4). In Huh7 cell line, expressions of 
single Sorafenib and its combined treatment with TGX-
221 were highly correlated, which was also visualized 
in heatmap analysis. For all treatments in HCC, a posi-
tive regulation of extracellular matrix organization and 
developmental processes were observed, while regulation 
of cell proliferation and actin filament bundle assembly 
ontologies were more active in single PIK-75 treatment. 
PIK-75 and Sorafenib combined treatment resulted in 
downregulation of genes enriched in negative regula-
tion of biosynthetic processes and cell fate commitment 
ontologies. Likewise, cholesterol metabolic process was 
downregulated for TGX-221 and its Sorafenib combi-
natory treatment. We also identified a group of genes 
involved in apoptosis stimulation process. The genes are 
2 histone family proteins, 1 long intergenic non-translat-
ing RNA, uncharacterized proteins FAM184B and NCB-
P2AS2, NBP and NAG5 and ATP2A1 downregulated in 
the treatment of PIK-75 alone while they were upregu-
lated all the other Huh7 treatments.

Immune response was downregulated more signifi-
cantly in Mahlavu cells in treatments combined with 
Sorafenib treatment. Cation binding was enhanced 
for PIK-75 and its Sorafenib combination. Choles-
terol metabolic processes, angiogenesis and vas-
cular endothelial growth factor receptor 2 binding 
were downregulated for all treatments. A group of 
genes were upregulated in both single Sorafenib and 
combinatory TGX-221 treatments while they were 

(See figure on next page.)
Fig. 2  Real-time cell growth analysis. Human liver cancer cells Huh7 (A, B) and Mahlavu (MV) (C, D) were treated with the Sorafenib, PI3Ki-α and 
PI3Ki-β alone or in combination with increasing concentrations as indicated. Cell index measurements were obtained by RT-CES software. DMSO 
was used as negative control A B. 72 h of the percent growth inhibition values were used to calculate drug interactions with The SynergyFinder 
web application. Positive delta score reflects synergistic and negative score reflects antagonistic drug interactions. Experiments were performed in 
triplicate
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Fig. 2  (See legend on previous page.)



Page 6 of 17Narci et al. BMC Cancer          (2022) 22:320 

downregulated in single PIK-75 and combinatory 
PIK-75 treatments. Because of this opposite effect, we 
anticipated the relation of these genes with antago-
nistic action of combined therapy of TGX-221 and 
Sorafenib. In this group, most of the genes were mito-
chondrial pseudo-genes. It is known that mitochon-
drial dysfunctions are mostly associated with apoptotic 
resistance and metabolism of tumor cells and one of 
HCC hallmarks points out the mitochondrial muta-
tions in cancer development. Furthermore, downregu-
lation of enzymes mediating oxidative phosphorylation 
for TGX-221 and Sorafenib treatment with respect to 

PIK-75 treatments confers the previous antagonistic 
nature in Mahlavu cells [27].

Network based interpretation with omics integrator
A traditional way of RNA-seq analysis is to use only 
DEG sets for gene enrichment analysis, which generally 
restricts the capture of complete cellular events. How-
ever, application of a conventional method to connect 
DEGs in a network though their known protein-protein 
interactions can reveal intersecting/hidden regulation 
patterns. Using the Omics Integrator tool, we adapted 
Prize Collecting Steiner Tree (PCST) algorithm to 

Fig. 3  Systems Biology flowchart for RNA-seq Data analysis. Systems level methodology flowchart for differential PIK3K/Akt/mTOR pathway 
activities in Huh7 and Mahlavu calls treated with Sorafenib, PI3K-α inhibitor PIK-75 and PI3K-β inhibitor TGX-221 alone or in combination (A). 
Differentially Expressed Genes (DEG) Table summarize the abbreviations of samples as the treatments to HCC cells and differentially expressed gene 
(DEG) numbers. DEG filtration for A and B as follows; Huh7 cells:logFC ≥2.0, ≤ − 2.0 and p ≤ 0.01, Mahlavu cells: logFC ≥1.5, ≤ − 1.5 and p ≤ 0.01 
(B). Pearson correlations for gene expressions in Huh7 and Mahlavu, no filtration (C). Dendrogram analysis on logFC for top 50 DEGs, red and blue 
color represented for up- and downregulated genes (D)
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associate DEGs by adding intermediate genes (or Steiner 
nodes) aiming the construction of the most optimal 
gene-to-gene network. As reference network, we con-
verted protein nodes in STRING human protein interac-
tion network to gene nodes. Using Steiner nodes together 
with DEG sets introduced more specific gene ontologies. 
Distribution and relations of PCST enriched gene sets 
were presented in 5 sets Edwards–Venn diagrams for 
each treatment (Fig. 5A and D). NHBE was found to be 
differentially expressed in PIK-75 (ALPHA) and TGX-
221 (BETA), and Sorafenib-PIK-75 (SALPHA). LAMP3, 
SIRPG and CD83 genes were differentially expressed in 
TGX-221 (BETA), and Sorafenib-PIK-75 (SALPHA). 
FOSB was differentially expressed in TGX-221 (BETA), 
Sorafenib-PIK-75 (SALPHA), and Sorafenib-TGX221 
(SBETA). RICTOR and STK32A were differentially 
expressed in Sorafenib-TGX-221 (SBETA) and Sorafenib 
(SOR) treatments.

Although, DEG lists were found to be highly corre-
lated, network based functional analysis revealed that 

kinase inhibitor treatments in both cell lines resulted 
in different biological processes. A better compari-
son of the networks was provided through a functional 
encolouring and sizing of the nodes and a systematic 
usage of the network centrality measures for cluster-
ing. PCST predicted optimal gene-to-gene networks 
were imported into Cytoscape, and gene logFC val-
ues were used to color the nodes to represent up- and 
downregulated branches. We arranged the sizes of the 
nodes according to their betweenness centrality to bet-
ter organize hub genes. PCST optimal input parameters 
(final network statistics) were summarized in Sup-
plementary Table  3. In Fig.  5B and E, network nodes 
including both DEGs and Steiners were compared. As 
a result of PCST, hidden expression patterns were iden-
tified. Since input DEG numbers for TGX-221 treated 
Huh7 and Mahlavu cells and Sorafenib treated Mahlavu 
cell were low, their networks were smaller. Sorafenib 
and TGX-221 combined treatments in Huh7 and single 
PI3K-α inhibitor (PIK-75) and combined treatments in 

Fig. 4  Gene Expression Patterns. Heatmaps of gene expressions illustrated as dendrograms separately for Huh7 and Mahlavu cells lines. We 
removed single PI3K-β inhibitor treatments for both cell lines considering its ineffectiveness. Sample sets for Huh7 and Mahlavu were separately 
joined, and united sets included 11,033 and 11,615 genes in total before filtration. Gene enrichment analysis was performed using BiNGO 
(FDR ≤ 0.05) and significant gene ontologies were selected according to the context. Hence, dendrogram analysis were performed on 581 genes for 
Huh7 and 583 genes for Mahlavu cells. For more detailed analysis and to view interactive dendrogram please see CanSyL github repository. Clusters 
were generated by heatmaply and colored; 8 for Huh7 and 6 for Mahlavu. Clusters not showing any significant enrichment were excluded. Up- and 
downregulated gene expression levels are colored as red and blue respectively, the intensity of the color indicates how strong the logFC value is. 
ALPHA; PIK-75, SALPHA; PIK-75 and Sorafenib, SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments
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Mahlavu were separated from the other treatments in 
the dendrograms.

We optimized the networks by limiting the number 
of trees to one. By minimizing their overall degrees 
to avoid hairballs we had more than one central hub 
nodes in the network generating more branches for 
the analysis (Fig. 5C and F). In order to understand the 
relatedness between the gene nodes in the networks, 
the functions of the branches should be exploited. 
Yet, the significance of biological enrichment analysis 
highly depend on the input size. The power of statis-
tical analysis is low for large DEG sets. Eventually, we 
clustered networks using gene nodes’ betweenness 
centralities by Glay algorithm creating branches and 
applied BiNGO for each cluster/branch to get their 
enriched gene ontologies. Finally, we selected the sig-
nificant gene ontologies for clusters, and connected 
them through the network. The ultimate network visu-
alizations allowed us to analyze overall effect of up- or 
downregulation of genes and provided a comprehen-
sive space for network comparisons through clusters. 
Other network representations can be reached in Sup-
plementary Figs.  1–10 and associated Cytoscape files 
are in the referred CanSyL github repository.

Selection and validation of genes from optimal networks 
based on centrality metrics
In order to reveal candidate genes to be target for drug 
studies, optimal PCST networks were analyzed with their 
centrality metrics. Since hub nodes in the optimal net-
works were mostly the well-studied genes, we decided 
to eliminate them to find novel targets in branches. 
Although Omics Integrator scales the optimal networks 
avoiding hub node bias, we also filtered out the nodes 
that have betweenness centrality values higher than 0.001 
after filtration of random nodes (frequency ≥ 0.01).

Then, we used centrality properties of optimal net-
works which were calculated by Networkx python 
library. Each network was filtered by degree, eigen-
vector and betweenness centralities that were higher 
than 0.001 allowing us both not to select the nodes at 
the end of the branches. The remaining nodes were 
sorted by inhibitor treatments and eigenvector central-
ity, and at most six genes were selected for each treat-
ment (Fig. 6A). In the final sets, we have come up with 
20 genes for each cell line (Fig.  6B). For Huh7 cells: 
CDC27, CCDC80, AARS2, ACSBG2 and CITED2 
genes in PIK-75 inhibitor treatment, RIMKLA in TGX-
221 treatment, CEBPB, DNAJC10, DLK1, EDEM1, 

Fig. 5  Network based interpretation of DEGs. Venn diagram scheme of Huh7 network nodes (A). Dendogram of GO enrichments for Huh7 (B). 
Network representation of PI3Ki-β and Sorafenib treated Huh7 cells (C). Dendogram of GO enrichments for Mahlavu (D). Venn diagram scheme of 
Mahlavu network nodes (E). Network representation of PI3Ki-β and Sorafenib treated Mahlavu cells (F). ALPHA; PI3Ki-α inhibitor, SALPHA; PI3Ki-α 
inhibitor and SOR, SBETA; PI3Ki-β inhibitor and SOR, SOR; Sorafenib treatments
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ATP6V1D and DUSP8 genes in PIK-75 and Sorafenib 
combined treatment, LIN7C gene in TGX-221 and 
Sorafenib combined treatment, EXOC7, FEZ1, GAB2, 
HOXA10, BIRC7 and ANKRD28 genes in Sorafenib 
inhibitor treatment and for Mahlavu cells: ATP1B1, 
CACNA1H, CAPNS1, CCT7, ATG9A and BOLA2B 
genes in PIK-75 treatments, CGA and TNFRSF4 genes 
in TGX-221 inhibitor treatment, ALMS1, AOX1, 
BCL3, CD276, ANKRD1 and ASIC1 genes in PIK-75 

and Sorafenib combined treatment, HMGCS1, GDF15, 
AGER, FABP1, ACOT12, CRHR1 genes in TGX-221 
and Sorafenib combined treatment were prioritized 
for further investigations. For PTEN deficient Mahlavu 
cells along with single Sorafenib treatment, our pri-
oritization strategy found no significant genes. Yet, it 
is interesting to find some of the targets from Steiner 
nodes (white boxes) since they cannot be exploited 
using classical differential expression analysis.

Fig. 6  Proposed drug target genes. Prioritized nodes for Huh7 and Mahlavu was ranked by betweenness centrality values of randomized networks 
for each inhibitor treatment (A). Expressions of the genes in the cell lines. Prioritized treatments were pointed for corresponding drug treatment 
target (B). Relative expression profile of Mahlavu (C) and Huh7 (D) cells for AOX1 and AGER genes determined by qRT-PCR. Expression values were 
normalized with RPL19. Experiment was performed as triplicates and for statistical analysis, unpaired t-test with Welch correction was performed. 
*p < 0.05; **p < 0.01. ALPHA; PI3Ki-α inhibitor, HBETA; PI3Ki-β inhibitor, SALPHA; PI3Ki-α inhibitor and SOR, SBETA; PI3Ki-β inhibitor and SOR, SOR; 
Sorafenib treated cells
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In vitro validation of selected target genes AOX1 and AGER
We selected AOX1 and AGER genes to be validated by 
mRNA expression though qPCR experiments (Fig. 6C 
and D). Mahlavu and Huh7 cells were treated with 
Sorafenib or its combinations with PI3K-α and β inhib-
itors. AGER was selected because it is a pure Steiner 
node and not found in our DEG list. Whereas AOX1 
was in both Steiner node and part of the DEG list. 
Hence, our qPCR results correlate and validated our 
network analysis results.

Furthermore, we performed AOX1 and AGER gene 
knockdown experiments on HCC cells to investigate 
the effects of the loss of these genes on cell prolif-
eration. Knockdown with specific siRNAs (Fig.  7A) 
resulted in significant effect on cell proliferation 
(Fig.  7B). Hence, real-time cell proliferation analysis 
has shown that silencing AGER and AOX1 significantly 

inhibited growth of these cells with respect to negative 
control siRNA treatments. Overall, results from our 
in vitro experiments have supported and validated the 
systems level PCST network analysis.

Discussion
Recently the influence of isoform diversity on responses 
to drugs with respect to large number of GPCR recep-
tors is demonstrated at systems level [17]. Current 
studies focusing on the discovery of agents against 
HCC aim to identify target proteins that escape from 
regulatory signaling mechanisms of the cell. Conven-
tionally, these studies concentrate on a single gene or 
locus which result in a comprehensive investigation 
of a new tumor driver gene, yet, in most cases single 
driver gene analyses are inadequate to solve the com-
plex network of cancer pathogenesis as the interaction 

Fig. 7  Effects of knockdown of AGER and AOX1 genes on proliferation of HCC cell lines. Knockdown of AGER and AOX1 genes in Mahlavu and 
Huh7 cells using 25 nM siRNA validated with q-RT-PCR experiments. Experiments were performed in triplicates and results were represented 
as means ± SEM. One-Way ANOVA was performed for statistical analysis (A). Cell growth analysis of Mahlavu and Huh7 cells for which siRNA 
treatments targeting AGER and AOX1 genes were done and cell index values reflecting cell growth were monitored for 72 h. Knockdown of both 
genes resulted in significant drop in cell proliferation in both cells (B). Experiments were performed in triplicates, and results were represented as 
means ± SEM. Two-Way ANOVA was performed for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001
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of several signaling pathways and their interlaced con-
nections including HCC which represents high rate of 
tumor heterogeneity.

PI3K/Akt/mTOR signaling is involved in cellular 
growth, proliferation, and cell cycle progression in vari-
ous cancer cells [6]. Frequent mutations and loss of func-
tion in PTEN tumor suppressor gene leads to constitutive 
activation of Akt protein hence activation of PI3K/Akt/
mTOR cell survival pathway. Sorafenib, which is the most 
studied therapeutic agent for HCC, that targets Raf/
MEK/ERK cascade. This is compensated by PI3K/Akt 
signaling activation in favor of cell survival in cancer cells 
which is one of the reasons for limited effectiveness of 
this drugs [8]. Sorafenib treatment frequently results in 
resistance to the treatment within nearly 6 months due to 
release of pro-inflammatory cytokines and chemokines 
in tumor microenvironment which promotes cancer 
stemness, tumor proliferation, and angiogenesis [28, 29]. 
Hence signaling pathways activated by these molecules in 
favor of Sorafenib resistance must be targeted in order to 
alter resistance toward Sorafenib.

There are several drugs in clinical trials targeting PI3Ks 
inhibiting tumor progression [22]. PI3K inhibitors are 
classified as pan-PI3K inhibitors and isoform specific 
inhibitors. Current molecular and clinical trial stud-
ies focus on the effectiveness of these inhibitors as well 
as the mechanisms of resistance to PI3K inhibition. In 
this study, we investigated the molecular alterations in 
combinatory treatment of isoform PI3kinase inhibitors 
targeting PI3K/Akt/mTOR pathway with Raf/MEK/ERK 
signaling inhibitor Sorafenib either on PTEN adequate 
(Huh7) or deficient (Mahlavu) HCC cells (Fig.  1). PI3K 
inhibitors are usually combined with mTOR inhibitors 
in order to increase the effectiveness of the treatment 
[22, 30]. However, there are limited studies which targets 
alternate cell signaling survival pathways (i.e. Raf/MEK/
ERK vs PI3K/Akt/mTOR) with the aim of revealing the 
genes involved in synergistic or antagonistic resistance to 
inhibitors.

We showed synergistic inhibition of cell growth in 
both cell lines treated with PI3K-α inhibitor PIK-75 and 
Sorafenib. The synergistic cytotoxicity was more effec-
tive in PTEN-adequate Huh7 cells. While combinatory 
PI3K-β inhibitor TGX-221 treatment also synergistically 
inhibited cellular growth in Huh7, we observed a strong 
antagonistic effect in Mahlavu cells indicating the impor-
tance of isoform specific actions of Phosphatidylinosi-
tol 4,5-bisphosphate 3-kinase catalytic subunit isoform 
kinase inhibitors. We then investigated the molecular 
mechanisms involved in this differential phenotypic 
response to isoform specific inhibition by comprehensive 
network analysis of RNA-seq data upon treatment with 

drugs in combination with Sorafenib. Both inhibitors 
resulted with up regulation of key pathways in inflamma-
tion and immune response like; BCL3/NF-κB, cell prolif-
eration (CDH2 and CCD1), Jun kinase and osmotic stress 
in Huh7 cells. Moreover, in TGX-221 and Sorafenib treat-
ment, genes having role on regulation of programmed 
cell death and apoptotic mitochondrial changes were 
downregulated. It is known that interactions of GTPases 
with PI3K are isoform specific, while Ras cannot bind to 
p110-β, RAC1 and CDC42 proteins can activate p110-β 
[31]. Our network analysis showed that PI3K-α inhibitor 
(PIK-75) and its combined treatment with Sorafenib also 
showed a correlation in Huh7 cells. They both resulted 
with negative regulation of Erk1/Erk2 signaling and 
activation of MAPKK activity. Combinatory treatment 
with Sorafenib, mostly resulted with downregulation of 
hub proteins JUN, INSIG1, MDM2 and SOX9 associ-
ated with cancer cells. Hence, in PTEN adequate Huh7 
cells, PIK-75 and Sorafenib treatment could decrease cell 
proliferation and decrease Sorafenib dependent immune 
response. Our data indicates that targeting PI3Ki-α iso-
form in an inhibited MAPK pathway background with 
Sorafenib would be a better therapeutic approach in both 
PTEN deficient and adequate Hepatocellular cancer cells.

On the other hand, combination of PI3K-β inhibi-
tor (TGX-221) and Sorafenib in Mahlavu cells showed a 
strong antagonistic action, which probably depends on 
PI3Ki-α isoform activity. Our data with PTEN deficient 
Mahlavu cells demonstrated that constitutive PI3K/
Akt pathway activation makes these cells more resist-
ant due to PI3K-α isoform activation since the inhibi-
tion of PI3K-β with its specific inhibitor TGX-221 makes 
these cells resistant to Sorafenib. When TGX-221 and 
Sorafenib was combined, MAPK and nuclear factor 
kappa B (NF-κB) signaling upregulated and increasing 
activity in response to immune stress and inflammatory 
injuries genes were enriched (Figs. 4 and 5). In Mahlavu, 
TGX-221 combined with Sorafenib treatment shows 
a decreased level of Bcl-3 responsible for antagonistic 
action.

In this study we also performed system level network 
analysis in order to identify genes involved in isoform 
specific actions of PI3K inhibitors using DEG genes from 
our RNA-seq transcriptome data on STRING human 
protein interaction networks. Our prioritization strat-
egy using topological features of the optimized networks 
identified hub and Steiner nodes representing genes 
involved in differential synergistic or antagonistic effects 
of isoform specific PI3K-α (PIK-75) or PI3K-β (TGX-
221) inhibitors combined with Sorafenib. Many of these 
(DLK1, GAB2, BOLA2B, AOX1 and AGER) were closely 
related to cell proliferation and tumor progression, and 



Page 12 of 17Narci et al. BMC Cancer          (2022) 22:320 

associated with poor prognosis in HCC [32–34]. Steiner 
nodes prioritized in Mahlavu cells treated with PI3K-α 
(PIK-75) and Sorafenib identified Aldehyde oxidase 1 
(AOX1), and Mahlavu cells treated with PI3K-β (TGX-
221) and Sorafenib identified Advanced glycosylation 
end product-specific receptor (AGER) genes. Differential 
expression of these genes were validated by qPCR experi-
ments as shown in Fig.  6C and D. Furthermore, siRNA 
knockdown of these two genes negatively affected cell 
proliferation significantly (Fig.  7). Both genes are asso-
ciated with glucose metabolism and generation of reac-
tive oxygen species and are involved in proinflammatory 
actions in liver carcinogenesis [35, 36]. AOX1 is consid-
ered one of the key biomarkers in HCC and abnormal 
expression of AOX1 is correlated with the poor prognosis 
[37]. AGER, also is shown as one of the main responsible 
factors in tumorigenesis of HCC cells in the presence of 
high glucose for diabetes [36].

Conclusions
Combination of targeted drugs to inhibit alternative 
compensatory pathways holds great promise for effec-
tive treatment of cancer including HCC. As we clearly 
demonstrated and validated both in silico and in  vitro, 
in this study system level analysis of cellular networks in 
response to combination treatments and the investiga-
tion of the regulation signaling pathways are of neces-
sity, because such treatments may result in an opposite 
of the desired effect. The importance of context depend-
ent (PTEN status) PI3K/Akt/mTOR signaling inhibi-
tion must be taken into consideration during the use of 
isoform specific or pan-PI3K inhibitors in combination 
therapies with Sorafenib with respect to resistance in 
HCC cells.

Material and methods
Cell lines and kinase inhibitors
Mahlavu and Huh7, HCC cell lines were cultured in 
DMEM medium, supplemented with 10% fetal bovine 
serum (FBS), 1% penicillin/streptomycin (P/S) and 1% 
non-essential amino acids (NEA) and incubated in 
humidified 37 °C incubator with 5% CO2. Mahlavu and 
Huh7 cell lines were treated with the inhibitors which are 
listed in Supplementary Table 1 (Sorafenib (Nexavar) was 
from Bayer Healthcare Pharmaceuticals, Inc., NJ USA, 
Inhibitors PIK-75 (cat#528116), TGX-221 (cat#528113), 
LY294002 (cat#440202) were from Calbiochem).

Cytotoxicity and cell cycle
Huh7 (2000cell/well) and Mahlavu (1000 cell/well) 
cell lines were seeded into 96-well plates in 150 μl of 
medium/well. The next day, cells were treated with 
the drugs (Sorafenib (Nexavar) Bayer Healthcare 

Pharmaceuticals, Inc., NJ USA, or PIK-75 (PI3K-α inh.), 
TGX-221 (PI3K-β inh.), LY294002 (PanPI3Ki) and con-
trol (DMSO) in triplicates. After 72 h, the media was dis-
carded, and the wells were washed with PBS, and 50 μl 
of 10% cold TCA (Merck, Germany) was added for fix-
ation and incubated with TCA at + 4 °C in dark for 1 h. 
Then cells were washed with ddH2O for 4 times, and the 
plates were air-dried at room temperature. Finally, 50 μl 
of 0.4% sulphorhodamine B (SRB) (Sigma Aldrich) solu-
tion in 1% acetic acid was applied to each well, and the 
plates were incubated for 10 min in dark at room temper-
ature. Excess dye was washed off with 1% acetic acid (4 
or 5 washes). Finally, 200 μl of 10 mM cold Tris-Base was 
applied to each well to solubilize SRB. Then, the absorb-
ance values were measured at 515 nm and were analyzed 
to determine the effect of each drug on cell proliferation 
compared to control [38]. Sorafenib, PIK-75 and TGX-
221 were used to treat HCC cells in concentrations which 
described in respective figure legend and the cells were 
incubated for 96 h. Cell viability and DNA content cal-
culations in flow cytometric cell cycle analysis was per-
formed using propidium iodide.

Real‑time cell electronic sensing (RT‑CES) system for cell 
growth and cytotoxicity analysis and synergy analysis
50 μl Huh7 (2000 cell/well) and Mahlavu (1000 cell/well) 
cells were seeded into 96-well plates in 100 μl of medium/
well. The next day, cells were treated with the drugs and 
CI (Cell Index) values were taken every 10 min for 4 h 
to get the fast drug response and then every 30 min to 
obtain the long-term drug response. Impedance meas-
urements displayed as CI values reflect cell growth. The 
SynergyFinder Zero Interaction Potency (ZIP) model is 
used for the evaluation of the combined effect of PIK-
75, TGX-221, and their combinations with Sorafenib 
(Sorafenib (Nexavar) Bayer Healthcare Pharmaceuticals, 
Inc., NJ USA). ZIP model defines the effect of combin-
ing two compounds by comparing the change in the 
dose-response curves between individual drugs and their 
combinations [39]. For monitoring the effects of siRNA 
treatment for AOX1 or AGER genes, Mahlavu and Huh7 
cells were seeded onto 96-well E-Plate in triplicates. After 
overnight incubation, siRNA treatments were done as 
described previously. Cell index (CI) were recorded every 
30 min for total of 96 h. Data was normalized using time-
zero CI values (when siRNA treatment was performed). 
For statistical analysis, Two-Way ANOVA was performed 
using GraphPad Prism 8.

RNA extraction and sequencing
Total RNA was isolated with NucleoSpin RNA II Kit 
(Macherey-Nagel) according to the manufacturer’s pro-
tocol (MN, Duren, Germany) with small modifications 
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such as 30 min of DNA digestion instead of 15 min and 
2-step elution with 20 μl water instead of one elution 
with 60 μl. RNA concentration was measured with Nan-
oDrop and A260/A280, A260/A230 ratios were checked 
for RNA quality and purity. Total RNAs were provided to 
BGI Tech (https://​en.​genom​ics.​cn/) for sequencing. RIN 
values are acquired Agilent Bioanalyzer system and they 
were above 0.8 for all samples. Details of RNA-seq exper-
iment and data can be found at PRJNA556552.

Wound healing
In the wound-healing assay, a wound was made in the 
middle of a confluent cell monolayer and the migration of 
cells to this area was assessed by taking photos at differ-
ent time points and calculating the wound closure with 
respect to the initial wound width. Sorafenib, and TGX-
221 were used at a concentration of 10 μM, except PIK-
75 inhibitor, which was used at 0.1 μM concentration. 
Photos of the wounds were taken after 24 h and 48 h. The 
sizes of the wounds were calculated at all time points. At 
least 12 different wound distances were noted for each 
condition at each time point and the averages were used 
for analysis to construct the graphs.

Quantitative RT‑PCR (qRT‑PCR)
Mahlavu (100.000 cells/dish) and Huh7 (250.000 cells/
dish) were seeded into 10 cm culture dishes. After 24 h, 
cells were treated with the inhibitors and incubated for 
48 h and then collected for RNA isolation. RNA-puri-
fication kit (Qiagen, cat#74106) and cDNA synthesis 
(ThermoFischer, cat#K1621) kit were used according to 
manufacturer’s protocol. Total RNA amounts were meas-
ured with Nanodrop One (ThermoFisher). qPCR was 
initiated with 50 ng cDNA and performed with FastStart 
Essential DNA Green Master (Roche, cat#6402712001) 
via Roche LightCycler 96 Instrument, according to manu-
facturer’s protocol optimized for this instrument. Primer 
sequences are: AOX1-f: 5′-ggggtgttccgtgtttttcg-3′, AOX1- 
r: 5′-caggttcatctctcggaatcattt-3′, AGER-f: 5′-agcatcagcat-
catcgaacca-3′, AGER-r: 5′-gcctttgccacaagatgacc-3′ and 
RPL19-f: 5′-gctctttcctttcgctgctg-3′, RPL19-r: 5′-ggatct-
gctgacgggagttg-3′. All reactions were performed in trip-
licates. The Ct (cycle threshold) values were normalized 
against RPL19 reference gene [40]. To determine the rela-
tive expression of target genes in inhibitor treated cells to 
that of DMSO treated cells, the ∆ ∆Ct method was used. 
Results were analyzed with GraphPad Prism 9.0.

siRNA transfection
Mahlavu (13.000 cells/well) and Huh7 (30.000 cells/well) 
were seeded onto 24-well plates in Penicillin-Streptomy-
cin free DMEM; supplemented with 10% FBS, 1x L-Glu-
tamine, and 1x non-essential amino acid solution. After 

overnight incubation, media was removed, and siRNA 
targeting AOX1 (ON-TARGETplus Human AOX1 (316) 
siRNA, SMARTpool cat#L-008291-00-0005) or AGER 
mRNA (ON-TARGETplus Human AGER (177) siRNA, 
SMARTpool, cat#L-003625-00-0005) were prepared in 
1x siRNA Buffer (cat#B-002000-UB-100) and adminis-
tered in 25 nM concentrations in the presence of FBS and 
Penicillin-Streptomycin free DMEM according to manu-
facturer’s protocol. As negative controls, 25 nM non-tar-
geting pool siRNA (cat#D-001810-10-05) (NC-siRNA) 
and DharmaFECT 4 Transfection Reagent (cat#T-2004-
02) treated groups (UNT) were used. After 12 h of incu-
bation, treatment media was replaced with DMEM 
including 10% FBS, 1x Penicillin-Streptomycin, 1x 
L-Glutamine and 1x non-essential amino acid and incu-
bated for the following 48 h. Cell pellets were collected 
via trypsinization, frozen in liquid nitrogen, and stored at 
− 800°. RNA isolation, cDNA conversion and q-RT-PCR 
experiments for AOX1 and AGER genes were performed 
as described previously. For statistical analysis, One Way 
ANOVA was performed using GraphPad Prism 8.

Bioinformatics methods
RNA‑Seq analysis
RNA reads were processed by Illumina Hiseq 2000 
(SE50). 12 FASTQ files (PR-JNA556552), were first ana-
lyzed through a well-known quality assessment tool; 
FASTQC [41]. Then, without any trimming, single-
end reads were aligned to the reference human genome 
(GRCh38/hg38) using a split read aligner algorithm 
TopHat V2.1.0 [42]. TopHat itself features an ultrafast 
mapper Bowtie v2.2.6 algorithm [43]. After that, aligned 
reads were quantified by HTSeq-count v0.6.1 [44] for 
given human gene split regions (GRCh38 v84) to count 
how many transcripts map to each gene, which generates 
a gene level count matrix.

FASTQC analysis of this study results are included into 
the referred CanSyL github repository and other align-
ment metrics summarized in Supplementary Table 2.

Differential expression analysis for sequence count data
EdgeR [26], from Bioconductor package, is a widely used 
method for differential expression analysis. We used gene 
level count matrices of 12 RNA-seq treatment sets as 
input of EdgeR. DMSO treated Huh7 and Mahlavu cells 
were used as negative controls. EdgeR constructs a nega-
tive binomial model using the RNA count data. In our 
experimental design, there was no biological replicates 
of the samples to inherit the in-sample variation. EdgeR 
solves no-replication problem by suggesting a differ-
ent dispersion calculation method to estimate variation 
within each sample compared to housekeeping genes. A 

https://en.genomics.cn/
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set of housekeeping genes in Hepatocellular carcinoma 
was well characterized in Ersahin T. et al. [45]. We used 
these housekeeping genes to estimate biological coeffi-
cient of variation (BCV) value manually.

Before EdgeR analysis, genes with less than 5 read-
ings were filtered out using counts per million constraint 
(cpm ≤ 5). A biological model was constructed by tak-
ing BCV as 0.045. Differential analysis performed using 
exactTest function of EdgeR package. Then, we limited 
logFC (log2 of fold change) to −/+ 2 for both cell lines. 
However, with this limitation, Mahlavu had no significant 
numbers of DEGs for downstream analysis. On the other 
hand, Huh7 resulted greater number discounting for sin-
gle PI3Ki-β treatment. Therefore, for Mahlavu cell lines, a 
less stringent logFC value (− 1.5/+ 1.5) was used for fur-
ther analysis. Finally, we selected the top DEGs accord-
ing to following filters; p-value ≤0.01, FDR ≤ 0.01, and 
logFC ranges (− 2/+ 2) for Huh7 cell and (− 1.5/+ 1.5) for 
Mahlavu cell. Gene annotations were obtained using org. 
Hs.eg.db R package [46] from Bioconductor.

Dendrogram analysis
Heatmap representation is one of the most popular 
graphical methods for visualization of bigdata providing 
color encoding cells that represent numbers. Heatmaply 
[47] is a very powerful way of investigating clusters in a 
high dimensional data since final heatmap result is visual-
ized as interactive graph offering inspection over the cells 
making possible for zoom-in. In our study, all dendro-
grams were visualized through heatmaply using default 
hclust clustering by using Euclidian as distance measure.

Gene ontology (GO) analysis
Given a set of genes on the network, Cytoscape plug-
in BiNGO tool [48] maps functional terms to enriched 
genes to output GO terms and their statistical features. 
In order to have a better understanding of the pro-
cesses that selected genes having role on, statistically 
over-represented GO terms were characterized using 
BiNGO in our analysis. We have used a very stringent 
Benjamini&Hochberg False Discovery Rate (FDR ≤ 0.005) 
to filter out non-significant GO-terms. GO sets contain-
ing redundant and electronically annotated terms gener-
ated noise for functional comparisons. In order to avoid 
those suspicious GO terms, we have only used GOs with 
experimentally validated codes (EXP, IDA, IEP, IGI, IMP, 
and IPI). The codes were matched though Gene Ontology 
Annotation (GOA) database.

Network construction and optimization of DEGs using PCST 
approach
PCST (Prize Collecting Steiner Tree) [49, 50] aims to 
identify sub-networks from an interaction network given 

a set of weighted genes. By using PCST, we have extracted 
the biologically meaningful interactions between the 
DEGs from human protein-protein interaction data. We 
used Omics Integrator software to implement PCST 
algorithm. We used Forest module in our analysis to 
determine multiple sub-pathways in the human inter-
actome. PCST algorithm finds an optimal tree, includ-
ing the terminal nodes (from DEG lists in our case) with 
prizes travelling through the interactome nodes which 
have costs of edges only if they are included. The task is 
to find the shortest paths between the prize nodes avoid-
ing the costs on the edges. The algorithm minimizes the 
cost of all edges by passing through as many prize nodes 
as possible. In order to construct meaningful trees using 
DEGs, forest parameters must be fine-tuned. The size 
and degree of the forests are expected to vary as the num-
ber of genes in the input files changes. Forest parameters 
depend highly on the distribution of prizes and num-
bers of the nodes. The best combinations of parameters 
for each DEG set were explored using forest-tuner [51] 
which is PCST algorithm parameter tuner for ω, β and μ 
parameters. This script was used to find the best arrange-
ments of the parameters to be used in Forest module 
for each treatment. We had searched the parameters in 
the following ranges: ω (1–10.0 or 5–15), β (1–15.0), μ 
(0.01–0.05). Here, ω parameter tunes the number of trees 
in the network, β parameter increases the number of 
prices entering the tree and μ is another parameter that 
arranges the dominance of hub proteins in the network. 
Among all of the possible solutions, we have selected the 
combination which generates a network with minimum 
mean degree. Optimal PCST parameters are summarized 
in Supplementary Table 3.

The interactome set given to Forest module was derived 
from STRING protein- protein interaction database v10 
[52]. In STRING, network edges were scored accord-
ing to a confidence score (range of 0 to 1) determined 
through an algorithm by the database. The confidence 
score gets higher as it gets more experimental proofs 
basically. In our analysis, we used the interactions only 
with high confidence proofs (at least 0.7). Omics Integra-
tor performs -log10 conversion to the confidence score, 
so the cost negatively correlates to the confidence score.

Randomization tests
In order to test the significance of the nodes appearing in 
the optimal nodes, each PCST network was subjected to 
randomization tests using forest module (−randomTer-
minals 100). The tests were performed using random 
set of terminals with respect to keeping node numbers, 
and original interactome set with same edge weights and 
optimization penalties. The probability that a node ran-
domly to be connects in the network was expressed by 
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its frequency of randomness in the network. Therefore, 
less frequent nodes would be the most specific ones to 
the network. Throughout the analysis, we had used nodes 
that appeared only once in the random networks.

Network centrality
Centrality measures are the indicators of most valuable 
vertices in the graph for network analysis and they are 
often used to identify influential nodes of the network 
providing a ranking which identifies the important nodes 
in the network. We had used degree, eigenvector and 
betweenness centralities in order to estimate network 
topology. Networkx python library [53] was used to cal-
culate centrality measures.

Effective visualization and clustering of the networks
Omics Integrator Forest module generates networks 
in .sif format which is compatible format for Cytoscape 
visualizations. Cytoscape includes many add-on for bio-
logical network analysis, therefore we both analyzed 
and visualized our networks on this tool. For our study, 
after .sif file was imported into the Cytoscape yFiles lay-
out algorithms was implemented and hierarchical layout 
was selected for visualizations. In order to cluster the 
networks, Glay algorithm [54] using edge betweenness 
centrality was implemented. For proper annotation of 
the clusters AutoAnnotate plug-in [55] was used. Appli-
cation of this strategy resulted in the most connected 
patterns in the networks. Then, in order to better under-
stand what processes of these patterns have role on, sta-
tistically over-represented Gene Ontology (GO) terms 
were characterized using BiNGO for each cluster in net-
works. Only experimentally proven GOs (FDR ≤ 0.005) 
were used. Selected GO terms were also imported into 
the network using their gene maps. The final visualiza-
tions represented all gene relationships, up- and down-
regulated genes and internal Steiner nodes. Also, highly 
connected groups and GO annotations were provided for 
an easy and efficient way to compare networks with each 
other.

Prioritization of nodes in PCST generated networks
Based on the network topology, we developed a pri-
oritization strategy for further investigation as drug 
targets. A node is treatment specific only if it occurs 
in the branches on random networks while present in 
more central areas on the optimal networks. In order 
to accomplish these nodes, we used the least frequent 
nodes (0.01) resulting from randomization test. Here, 
hub nodes of optimal networks were selected through 
using degree, eigenvector and betweenness centralities 
greater than 0.001. From these nodes, we eliminated 
the predominant nodes in the random network using 

degree centrality of random networks smaller than 
0.001. Finally, the top 20 nodes for each treatment were 
selected and represented.
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